Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On a class of constacyclic codes over the non-principal ideal ring $\mathbb{Z}_{p^s}+u\mathbb{Z}_{p^s}$ (1703.00761v1)

Published 2 Mar 2017 in cs.IT and math.IT

Abstract: $(1+pw)$-constacyclic codes of arbitrary length over the non-principal ideal ring $\mathbb{Z}{ps} +u\mathbb{Z}{ps}$ are studied, where $p$ is a prime, $w\in \mathbb{Z}{ps}{\times}$ and $s$ an integer satisfying $s\geq 2$. First, the structure of any $(1+pw)$-constacyclic code over $\mathbb{Z}{ps} +u\mathbb{Z}{ps}$ are presented. Then enumerations for the number of all codes and the number of codewords in each code, and the structure of dual codes for these codes are given, respectively. Then self-dual $(1+2w)$-constacyclic codes over $\mathbb{Z}{2s} +u\mathbb{Z}_{2s}$ are investigated, where $w=2{s-2}-1$ or $2{s-1}-1$ if $s\geq 3$, and $w=1$ if $s=2$.

Summary

We haven't generated a summary for this paper yet.