Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 34 tok/s Pro
GPT-4o 72 tok/s
GPT OSS 120B 441 tok/s Pro
Kimi K2 200 tok/s Pro
2000 character limit reached

Predicting Rankings of Software Verification Competitions (1703.00757v1)

Published 2 Mar 2017 in cs.LG and cs.SE

Abstract: Software verification competitions, such as the annual SV-COMP, evaluate software verification tools with respect to their effectivity and efficiency. Typically, the outcome of a competition is a (possibly category-specific) ranking of the tools. For many applications, such as building portfolio solvers, it would be desirable to have an idea of the (relative) performance of verification tools on a given verification task beforehand, i.e., prior to actually running all tools on the task. In this paper, we present a machine learning approach to predicting rankings of tools on verification tasks. The method builds upon so-called label ranking algorithms, which we complement with appropriate kernels providing a similarity measure for verification tasks. Our kernels employ a graph representation for software source code that mixes elements of control flow and program dependence graphs with abstract syntax trees. Using data sets from SV-COMP, we demonstrate our rank prediction technique to generalize well and achieve a rather high predictive accuracy. In particular, our method outperforms a recently proposed feature-based approach of Demyanova et al. (when applied to rank predictions).

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.