Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalization of Schnyder woods to orientable surfaces and applications (1702.07589v1)

Published 24 Feb 2017 in cs.DM, cs.CG, and math.CO

Abstract: Schnyder woods are particularly elegant combinatorial structures with numerous applications concerning planar triangulations and more generally 3-connected planar maps. We propose a simple generalization of Schnyder woods from the plane to maps on orientable surfaces of any genus with a special emphasis on the toroidal case. We provide a natural partition of the set of Schnyder woods of a given map into distributive lattices depending on the surface homology. In the toroidal case we show the existence of particular Schnyder woods with some global properties that are useful for optimal encoding or graph drawing purpose.

Summary

We haven't generated a summary for this paper yet.