Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On algebraic branching programs of small width (1702.05328v2)

Published 17 Feb 2017 in cs.CC

Abstract: In 1979 Valiant showed that the complexity class VP_e of families with polynomially bounded formula size is contained in the class VP_s of families that have algebraic branching programs (ABPs) of polynomially bounded size. Motivated by the problem of separating these classes we study the topological closure VP_e-bar, i.e. the class of polynomials that can be approximated arbitrarily closely by polynomials in VP_e. We describe VP_e-bar with a strikingly simple complete polynomial (in characteristic different from 2) whose recursive definition is similar to the Fibonacci numbers. Further understanding this polynomial seems to be a promising route to new formula lower bounds. Our methods are rooted in the study of ABPs of small constant width. In 1992 Ben-Or and Cleve showed that formula size is polynomially equivalent to width-3 ABP size. We extend their result (in characteristic different from 2) by showing that approximate formula size is polynomially equivalent to approximate width-2 ABP size. This is surprising because in 2011 Allender and Wang gave explicit polynomials that cannot be computed by width-2 ABPs at all! The details of our construction lead to the aforementioned characterization of VP_e-bar. As a natural continuation of this work we prove that the class VNP can be described as the class of families that admit a hypercube summation of polynomially bounded dimension over a product of polynomially many affine linear forms. This gives the first separations of algebraic complexity classes from their nondeterministic analogs.

Citations (32)

Summary

We haven't generated a summary for this paper yet.