Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Moment Preserving Constrained Resampling with Applications to Particle-in-Cell Methods (1702.05198v3)

Published 17 Feb 2017 in physics.plasm-ph

Abstract: In simulations of partial differential equations using particle-in-cell (PIC) methods, it is often advantageous to resample the particle distribution function to increase simulation accuracy, reduce compute cost, and/or avoid numerical instabilities. We introduce an algorithm for particle resampling called Moment Preserving Contrained Resampling (MPCR). The general algorithm partitions the system space into smaller subsets and is designed to conserve any number of particle and grid quantities with a high degree of accuracy (i.e. machine accuracy). The resampling scheme can be integrated into any PIC code. The advantages of MPCR, including performance, accuracy, and stability, are presented by examining several numerical tests, including a use-case study in gyrokinetic fusion plasma simulations. The tests demonstrate that while the computational cost of MPCR is negligible compared to the nascent particle evolution in PIC methods, periodic particle resampling yields a significant improvement in the accuracy and stability of the results.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube