Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 163 tok/s Pro
2000 character limit reached

Fixed points of n-valued maps on surfaces and the Wecken property -- a configuration space approach (1702.05014v2)

Published 16 Feb 2017 in math.GT

Abstract: In this paper, we explore the fixed point theory of $n$-valued maps using configuration spaces and braid groups, focussing on two fundamental problems, the Wecken property, and the computation of the Nielsen number. We show that the projective plane (resp.\ the $2$-sphere ${\mathbb S}{2}$) has the Wecken property for $n$-valued maps for all $n\in {\mathbb N}$ (resp.\ all $n\geq 3$). In the case $n=2$ and ${\mathbb S}{2}$, we prove a partial result about the Wecken property. We then describe the Nielsen number of a non-split $n$-valued map $\phi\colon\thinspace X \multimap X$ of an orientable, compact manifold without boundary in terms of the Nielsen coincidence numbers of a certain finite covering $q\colon\thinspace \widehat{X} \to X$ with a subset of the coordinate maps of a lift of the $n$-valued split map $\phi\circ q\colon\thinspace \widehat{X} \multimap X$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.