Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Algorithms for k-Regret Minimizing Sets (1702.01446v2)

Published 5 Feb 2017 in cs.DS, cs.CG, and cs.DB

Abstract: A regret minimizing set Q is a small size representation of a much larger database P so that user queries executed on Q return answers whose scores are not much worse than those on the full dataset. In particular, a k-regret minimizing set has the property that the regret ratio between the score of the top-1 item in Q and the score of the top-k item in P is minimized, where the score of an item is the inner product of the item's attributes with a user's weight (preference) vector. The problem is challenging because we want to find a single representative set Q whose regret ratio is small with respect to all possible user weight vectors. We show that k-regret minimization is NP-Complete for all dimensions d >= 3. This settles an open problem from Chester et al. [VLDB 2014], and resolves the complexity status of the problem for all d: the problem is known to have polynomial-time solution for d <= 2. In addition, we propose two new approximation schemes for regret minimization, both with provable guarantees, one based on coresets and another based on hitting sets. We also carry out extensive experimental evaluation, and show that our schemes compute regret-minimizing sets comparable in size to the greedy algorithm proposed in [VLDB 14] but our schemes are significantly faster and scalable to large data sets.

Citations (43)

Summary

We haven't generated a summary for this paper yet.