Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

K-Regret Queries Using Multiplicative Utility Functions (1609.07964v4)

Published 26 Sep 2016 in cs.DB

Abstract: The k-regret query aims to return a size-k subset S of a database D such that, for any query user that selects a data object from this size-k subset S rather than from database D, her regret ratio is minimized. The regret ratio here is modeled by the relative difference in the optimality between the locally optimal object in S and the globally optimal object in D. The optimality of a data object in turn is modeled by a utility function of the query user. Unlike traditional top-k queries, the k-regret query does not minimize the regret ratio for a specific utility function. Instead, it considers a family of infinite utility functions F, and aims to find a size-k subset that minimizes the maximum regret ratio of any utility function in F. Studies on k-regret queries have focused on the family of additive utility functions, which have limitations in modeling individuals' preferences and decision making processes, especially for a common observation called the diminishing marginal rate of substitution (DMRS). We introduce k-regret queries with multiplicative utility functions, which are more expressive in modeling the DMRS, to overcome those limitations. We propose a query algorithm with bounded regret ratios. To showcase the applicability of the algorithm, we apply it to a special family of multiplicative utility functions, the Cobb-Douglas family of utility functions, and a closely related family of utility functions, the Constant Elasticity of Substitution family of utility functions, both of which are frequently used utility functions in microeconomics. After a further study of the query properties, we propose a heuristic algorithm that produces even smaller regret ratios in practice. Extensive experiments on the proposed algorithms confirm that they consistently achieve small maximum regret ratios.

Citations (17)

Summary

We haven't generated a summary for this paper yet.