Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

High-Order Shifted Gegenbauer Integral Pseudospectral Method for Solving Differential Equations of Lane-Emden Type (1702.00773v1)

Published 2 Feb 2017 in math.NA

Abstract: We present a novel, high-order, efficient, and exponentially convergent shifted Gegenbauer integral pseudospectral method (SGIPSM) to solve numerically Lane-Emden equations provided with some mixed Neumann and Robin boundary conditions. The framework of the proposed method includes: (i) recasting the problem into its integral formulation, (ii) collocating the latter at the shifted flipped-Gegenbauer-Gauss-Radau (SFGGR) points, and (iii) replacing the integrals with accurate and well-conditioned numerical quadratures constructed via SFGGR-based shifted Gegenbauer integration matrices. The integral formulation is eventually discretized into linear/nonlinear system of equations that can be solved easily using standard direct system solvers. The implementation of the proposed method is further illustrated through four efficient computational algorithms. Moreover, we furnish rigorous error and convergence analyses of the SGIPSM. Five numerical test examples are presented to verify the effectiveness, accuracy, exponential convergence, and numerical stability of the proposed method. The numerical simulations are associated with extensive numerical comparisons with other rival methods in the literature to demonstrate further the power of the proposed method. The SGIPSM is broadly applicable and represents a strong addition to common numerical methods for solving linear/nonlinear differential equations when high-order approximations are required using a relatively small number of collocation points.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube