Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Reinforcement Learning for Robotic Manipulation-The state of the art (1701.08878v1)

Published 31 Jan 2017 in cs.RO and cs.AI

Abstract: The focus of this work is to enumerate the various approaches and algorithms that center around application of reinforcement learning in robotic ma- ]]nipulation tasks. Earlier methods utilized specialized policy representations and human demonstrations to constrict the policy. Such methods worked well with continuous state and policy space of robots but failed to come up with generalized policies. Subsequently, high dimensional non-linear function approximators like neural networks have been used to learn policies from scratch. Several novel and recent approaches have also embedded control policy with efficient perceptual representation using deep learning. This has led to the emergence of a new branch of dynamic robot control system called deep r inforcement learning(DRL). This work embodies a survey of the most recent algorithms, architectures and their implementations in simulations and real world robotic platforms. The gamut of DRL architectures are partitioned into two different branches namely, discrete action space algorithms(DAS) and continuous action space algorithms(CAS). Further, the CAS algorithms are divided into stochastic continuous action space(SCAS) and deterministic continuous action space(DCAS) algorithms. Along with elucidating an organ- isation of the DRL algorithms this work also manifests some of the state of the art applications of these approaches in robotic manipulation tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Smruti Amarjyoti (1 paper)
Citations (60)

Summary

We haven't generated a summary for this paper yet.