Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Network Backboning with Noisy Data (1701.07336v1)

Published 25 Jan 2017 in physics.soc-ph, cs.DS, and cs.SI

Abstract: Networks are powerful instruments to study complex phenomena, but they become hard to analyze in data that contain noise. Network backbones provide a tool to extract the latent structure from noisy networks by pruning non-salient edges. We describe a new approach to extract such backbones. We assume that edge weights are drawn from a binomial distribution, and estimate the error-variance in edge weights using a Bayesian framework. Our approach uses a more realistic null model for the edge weight creation process than prior work. In particular, it simultaneously considers the propensity of nodes to send and receive connections, whereas previous approaches only considered nodes as emitters of edges. We test our model with real world networks of different types (flows, stocks, co-occurrences, directed, undirected) and show that our Noise-Corrected approach returns backbones that outperform other approaches on a number of criteria. Our approach is scalable, able to deal with networks with millions of edges.

Citations (85)

Summary

We haven't generated a summary for this paper yet.