Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unwinding the hairball graph: pruning algorithms for weighted complex networks (1503.04085v4)

Published 11 Mar 2015 in physics.soc-ph and cs.SI

Abstract: Empirical networks of weighted dyadic relations often contain noisy edges that alter the global characteristics of the network and obfuscate the most important structures therein. Graph pruning is the process of identifying the most significant edges according to a generative null model, and extracting the subgraph consisting of those edges. Here, we focus on integer-weighted graphs commonly arising when weights count the occurrences of an "event" relating the nodes. We introduce a simple and intuitive null model related to the configuration model of network generation, and derive two significance filters from it: the Marginal Likelihood Filter (MLF) and the Global Likelihood Filter (GLF). The former is a fast algorithm assigning a significance score to each edge based on the marginal distribution of edge weights whereas the latter is an ensemble approach which takes into account the correlations among edges. We apply these filters to the network of air traffic volume between US airports and recover a geographically faithful representation of the graph. Furthermore, compared with thresholding based on edge weight, we show that our filters extract a larger and significantly sparser giant component.

Citations (70)

Summary

We haven't generated a summary for this paper yet.