Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Primes in short intervals on curves over finite fields (1701.06822v3)

Published 24 Jan 2017 in math.NT and math.AG

Abstract: We prove an analogue of the Prime Number Theorem for short intervals on a smooth projective geometrically irreducible curve of arbitrary genus over a finite field. A short interval "of size E" in this setting is any additive translate of the space of global sections of a sufficiently positive divisor E by a suitable rational function f. Our main theorem gives an asymptotic count of irreducible elements in short intervals on a curve in the "large q" limit, uniformly in f and E. This result provides a function field analogue of an unresolved short interval conjecture over number fields, and extends a theorem of Bary-Soroker, Rosenzweig, and the first author, which can be understood as an instance of our result for the special case of a divisor E supported at a single rational point on the projective line.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)