Primes in short intervals on curves over finite fields (1701.06822v3)
Abstract: We prove an analogue of the Prime Number Theorem for short intervals on a smooth projective geometrically irreducible curve of arbitrary genus over a finite field. A short interval "of size E" in this setting is any additive translate of the space of global sections of a sufficiently positive divisor E by a suitable rational function f. Our main theorem gives an asymptotic count of irreducible elements in short intervals on a curve in the "large q" limit, uniformly in f and E. This result provides a function field analogue of an unresolved short interval conjecture over number fields, and extends a theorem of Bary-Soroker, Rosenzweig, and the first author, which can be understood as an instance of our result for the special case of a divisor E supported at a single rational point on the projective line.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.