Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Implementation Of Newton-Raphson Methods For Sequential Data Prediction (1701.05378v1)

Published 19 Jan 2017 in cs.DS, cs.CC, and cs.NA

Abstract: We investigate the problem of sequential linear data prediction for real life big data applications. The second order algorithms, i.e., Newton-Raphson Methods, asymptotically achieve the performance of the "best" possible linear data predictor much faster compared to the first order algorithms, e.g., Online Gradient Descent. However, implementation of these methods is not usually feasible in big data applications because of the extremely high computational needs. Regular implementation of the Newton-Raphson Methods requires a computational complexity in the order of $O(M2)$ for an $M$ dimensional feature vector, while the first order algorithms need only $O(M)$. To this end, in order to eliminate this gap, we introduce a highly efficient implementation reducing the computational complexity of the Newton-Raphson Methods from quadratic to linear scale. The presented algorithm provides the well-known merits of the second order methods while offering the computational complexity of $O(M)$. We utilize the shifted nature of the consecutive feature vectors and do not rely on any statistical assumptions. Therefore, both regular and fast implementations achieve the same performance in the sense of mean square error. We demonstrate the computational efficiency of our algorithm on real life sequential big datasets. We also illustrate that the presented algorithm is numerically stable.

Citations (1)

Summary

We haven't generated a summary for this paper yet.