Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

The (logarithmic) least squares optimality of the arithmetic (geometric) mean of weight vectors calculated from all spanning trees for incomplete additive (multiplicative) pairwise comparison matrices (1701.04265v3)

Published 16 Jan 2017 in math.OC

Abstract: Complete and incomplete additive/multiplicative pairwise comparison matrices are applied in preference modelling, multi-attribute decision making and ranking. The equivalence of two well known methods is proved in this paper. The arithmetic (geometric) mean of weight vectors, calculated from all spanning trees, is proved to be optimal to the (logarithmic) least squares problem, not only for complete, as it was recently shown in Lundy, M., Siraj, S., Greco, S. (2017): The mathematical equivalence of the "spanning tree" and row geometric mean preference vectors and its implications for preference analysis, European Journal of Operational Research 257(1) 197-208, but for incomplete matrices as well. Unlike the complete case, where an explicit formula, namely the row arithmetic/geometric mean of matrix elements, exists for the (logarithmic) least squares problem, the incomplete case requires a completely different and new proof. Finally, Kirchhoff's laws for the calculation of potentials in electric circuits is connected to our results.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.