Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Large-scale network motif analysis using compression (1701.02026v3)

Published 8 Jan 2017 in cs.LG

Abstract: We introduce a new method for finding network motifs: interesting or informative subgraph patterns in a network. Subgraphs are motifs when their frequency in the data is high compared to the expected frequency under a null model. To compute this expectation, a full or approximate count of the occurrences of a motif is normally repeated on as many as 1000 random graphs sampled from the null model; a prohibitively expensive step. We use ideas from the Minimum Description Length (MDL) literature to define a new measure of motif relevance. With our method, samples from the null model are not required. Instead we compute the probability of the data under the null model and compare this to the probability under a specially designed alternative model. With this new relevance test, we can search for motifs by random sampling, rather than requiring an accurate count of all instances of a motif. This allows motif analysis to scale to networks with billions of links.

Citations (3)

Summary

We haven't generated a summary for this paper yet.