Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Subgraph covers -- An information theoretic approach to motif analysis in networks (1406.1414v2)

Published 5 Jun 2014 in cs.SI, cs.DM, physics.soc-ph, and q-bio.MN

Abstract: Many real world networks contain a statistically surprising number of certain subgraphs, called network motifs. In the prevalent approach to motif analysis, network motifs are detected by comparing subgraph frequencies in the original network with a statistical null model. In this paper we propose an alternative approach to motif analysis where network motifs are defined to be connectivity patterns that occur in a subgraph cover that represents the network using minimal total information. A subgraph cover is defined to be a set of subgraphs such that every edge of the graph is contained in at least one of the subgraphs in the cover. Some recently introduced random graph models that can incorporate significant densities of motifs have natural formulations in terms of subgraph covers and the presented approach can be used to match networks with such models. To prove the practical value of our approach we also present a heuristic for the resulting NP-hard optimization problem and give results for several real world networks.

Citations (13)

Summary

We haven't generated a summary for this paper yet.