Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Questionnaires for Direct Identification of Optimal Product Design (1701.01231v1)

Published 5 Jan 2017 in stat.ML and cs.IR

Abstract: We consider the problem of identifying the most profitable product design from a finite set of candidates under unknown consumer preference. A standard approach to this problem follows a two-step strategy: First, estimate the preference of the consumer population, represented as a point in part-worth space, using an adaptive discrete-choice questionnaire. Second, integrate the estimated part-worth vector with engineering feasibility and cost models to determine the optimal design. In this work, we (1) demonstrate that accurate preference estimation is neither necessary nor sufficient for identifying the optimal design, (2) introduce a novel adaptive questionnaire that leverages knowledge about engineering feasibility and manufacturing costs to directly determine the optimal design, and (3) interpret product design in terms of a nonlinear segmentation of part-worth space, and use this interpretation to illuminate the intrinsic difficulty of optimal design in the presence of noisy questionnaire responses. We establish the superiority of the proposed approach using a well-documented optimal product design task. This study demonstrates how the identification of optimal product design can be accelerated by integrating marketing and manufacturing knowledge into the adaptive questionnaire.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Max Yi Ren (3 papers)
  2. Clayton Scott (39 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.