Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Learning Sensing Matrix and Sparsifying Dictionary Simultaneously for Compressive Sensing (1701.01000v4)

Published 4 Jan 2017 in cs.LG

Abstract: This paper considers the problem of simultaneously learning the Sensing Matrix and Sparsifying Dictionary (SMSD) on a large training dataset. To address the formulated joint learning problem, we propose an online algorithm that consists of a closed-form solution for optimizing the sensing matrix with a fixed sparsifying dictionary and a stochastic method for learning the sparsifying dictionary on a large dataset when the sensing matrix is given. Benefiting from training on a large dataset, the obtained compressive sensing (CS) system by the proposed algorithm yields a much better performance in terms of signal recovery accuracy than the existing ones. The simulation results on natural images demonstrate the effectiveness of the suggested online algorithm compared with the existing methods.

Summary

We haven't generated a summary for this paper yet.