Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deriving RIP sensing matrices for sparsifying dictionaries (2207.05381v1)

Published 12 Jul 2022 in cs.IT and math.IT

Abstract: Compressive sensing involves the inversion of a mapping $SD \in \mathbb{R}{m \times n}$, where $m < n$, $S$ is a sensing matrix, and $D$ is a sparisfying dictionary. The restricted isometry property is a powerful sufficient condition for the inversion that guarantees the recovery of high-dimensional sparse vectors from their low-dimensional embedding into a Euclidean space via convex optimization. However, determining whether $SD$ has the restricted isometry property for a given sparisfying dictionary is an NP-hard problem, hampering the application of compressive sensing. This paper provides a novel approach to resolving this problem. We demonstrate that it is possible to derive a sensing matrix for any sparsifying dictionary with a high probability of retaining the restricted isometry property. In numerical experiments with sensing matrices for K-SVD, Parseval K-SVD, and wavelets, our recovery performance was comparable to that of benchmarks obtained using Gaussian and Bernoulli random sensing matrices for sparse vectors.

Summary

We haven't generated a summary for this paper yet.