Convergence of Siegel-Veech constants (1701.00175v2)
Abstract: We show that for any weakly convergent sequence of ergodic $SL_2(\mathbb{R})$-invariant probability measures on a stratum of unit-area translation surfaces, the corresponding Siegel-Veech constants converge to the Siegel-Veech constant of the limit measure. Together with a measure equidistribution result due to Eskin-Mirzakhani-Mohammadi, this yields the (previously conjectured) convergence of sequences of Siegel-Veech constants associated to Teichm\"uller curves in genus two. The proof uses a recurrence result closely related to techniques developed by Eskin-Masur. We also use this recurrence result to get an asymptotic quadratic upper bound, with a uniform constant depending only on the stratum, for the number of saddle connections of length at most $R$ on a unit-area translation surface.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.