Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Infinite-Dimensional Generalizations of Orthogonal Groups over Hilbert Spaces : Constructions and Properties (1612.08636v1)

Published 23 Dec 2016 in math.HO

Abstract: In real Hilbert spaces, this paper generalizes the orthogonal groups $\mathrm{O}(n)$ in two ways. One way is by finite multiplications of a family of operators from reflections which results in a group denoted as $\Theta(\kappa)$, the other is by considering the automorphism group of the Hilbert space denoted as $O(\kappa)$. We also try to research the algebraic relationship between the two generalizations and their relationship to the stable~orthogonal~group~$\mathrm{O}=\varinjlim\mathrm{O}(n)$ in terms of topology. In this paper we mainly show that : (a) $\Theta(\kappa)$ is a topological and normal subgroup of $O(\kappa)$; (b) $O{(n)}(\kappa) \to O{(n+1)}(\kappa) \stackrel{\pi}{\to} S{\kappa}$ is a fibre bundle where $O{(n)}(\kappa)$ is a subgroup of $O(\kappa)$ and $S{\kappa}$ is a generalized sphere.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)