Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 73 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Economic Accelerator with Memory: Discrete Time Approach (1612.07913v2)

Published 23 Dec 2016 in q-fin.EC and q-fin.MF

Abstract: Accelerators with power-law memory are proposed in the framework of the discrete time approach. To describe discrete accelerators we use the capital stock adjustment principle, which has been suggested by Matthews.The suggested discrete accelerators with memory describe the economic processes with the power-law memory and the periodic sharp splashes (kicks). In continuous time approach the memory is described by fractional-order differential equations. In discrete time approach the accelerators with memory are described by discrete maps with memory, which are derived from the fractional-order differential equation without approximations. In order to derive these maps we use the equivalence of fractional-order differential equations and the Volterra integral equations.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.