Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 229 tok/s Pro
2000 character limit reached

Deep Blind Compressed Sensing (1612.07453v1)

Published 22 Dec 2016 in cs.CV

Abstract: This work addresses the problem of extracting deeply learned features directly from compressive measurements. There has been no work in this area. Existing deep learning tools only give good results when applied on the full signal, that too usually after preprocessing. These techniques require the signal to be reconstructed first. In this work we show that by learning directly from the compressed domain, considerably better results can be obtained. This work extends the recently proposed framework of deep matrix factorization in combination with blind compressed sensing; hence the term deep blind compressed sensing. Simulation experiments have been carried out on imaging via single pixel camera, under-sampled biomedical signals, arising in wireless body area network and compressive hyperspectral imaging. In all cases, the superiority of our proposed deep blind compressed sensing can be envisaged.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.