Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

REPPlab: An R package for detecting clusters and outliers using exploratory projection pursuit (1612.06518v1)

Published 20 Dec 2016 in stat.CO

Abstract: The R-package REPPlab is designed to explore multivariate data sets using one-dimensional unsupervised projection pursuit. It is useful in practice as a preprocessing step to find clusters or as an outlier detection tool for multivariate numerical data. Except from the package tourr that implements smooth sequences of projection matrices and rggobi that provides an interface to a dynamic graphics package called GGobi, there is no implementation of exploratory projection pursuit tools available in R especially in the context of outlier detection. REPPlab is an R interface for the Java program EPPlab that implements four projection indices and three biologically inspired optimization algorithms. The implemented indices are either adapted to cluster or to outlier detection and the optimization algorithms have at most one parameter to tune. Following the original software EPPlab, the exploration strategy in REPPlab is divided into two steps. Many potentially interesting projections are calculated at the first step and examined at the second step. For this second step, different tools for plotting and combining the results are proposed with specific tools for outlier detection. Compared to EPPlab, some of these tools are new and their performance is illustrated through some simulations and using some real data sets in a clustering context. The functionalities of the package are also illustrated for outlier detection on a new data set that is provided with the package.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.