Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s
GPT-5 High 23 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 441 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Methods and Tools for Bayesian Variable Selection and Model Averaging in Univariate Linear Regression (1612.02357v1)

Published 7 Dec 2016 in stat.CO

Abstract: In this paper we briefly review the main methodological aspects concerned with the application of the Bayesian approach to model choice and model averaging in the context of variable selection in regression models. This includes prior elicitation, summaries of the posterior distribution and computational strategies. We then examine and compare various publicly available {\tt R}-packages for its practical implementation summarizing and explaining the differences between packages and giving recommendations for applied users. We find that all packages reviewed lead to very similar results, but there are potentially important differences in flexibility and efficiency of the packages.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube