Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the number of maximum independent sets in Doob graphs (1612.00007v1)

Published 30 Nov 2016 in math.CO and cs.DM

Abstract: The Doob graph $D(m,n)$ is a distance-regular graph with the same parameters as the Hamming graph $H(2m+n,4)$. The maximum independent sets in the Doob graphs are analogs of the distance-$2$ MDS codes in the Hamming graphs. We prove that the logarithm of the number of the maximum independent sets in $D(m,n)$ grows as $2{2m+n-1}(1+o(1))$. The main tool for the upper estimation is constructing an injective map from the class of maximum independent sets in $D(m,n)$ to the class of distance-$2$ MDS codes in $H(2m+n,4)$.

Citations (3)

Summary

We haven't generated a summary for this paper yet.