Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distance-2 MDS codes and latin colorings in the Doob graphs (1510.01429v2)

Published 6 Oct 2015 in math.CO, cs.DM, cs.IT, and math.IT

Abstract: The maximum independent sets in the Doob graphs D(m,n) are analogs of the distance-2 MDS codes in Hamming graphs and of the latin hypercubes. We prove the characterization of these sets stating that every such set is semilinear or reducible. As related objects, we study vertex sets with maximum cut (edge boundary) in D(m,n) and prove some facts on their structure. We show that the considered two classes (the maximum independent sets and the maximum-cut sets) can be defined as classes of completely regular sets with specified 2-by-2 quotient matrices. It is notable that for a set from the considered classes, the eigenvalues of the quotient matrix are the maximum and the minimum eigenvalues of the graph. For D(m,0), we show the existence of a third, intermediate, class of completely regular sets with the same property.

Citations (4)

Summary

We haven't generated a summary for this paper yet.