Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 202 tok/s Pro
2000 character limit reached

On Prefix Normal Words and Prefix Normal Forms (1611.09017v1)

Published 28 Nov 2016 in cs.DM, cs.FL, and math.CO

Abstract: A $1$-prefix normal word is a binary word with the property that no factor has more $1$s than the prefix of the same length; a $0$-prefix normal word is defined analogously. These words arise in the context of indexed binary jumbled pattern matching, where the aim is to decide whether a word has a factor with a given number of $1$s and $0$s (a given Parikh vector). Each binary word has an associated set of Parikh vectors of the factors of the word. Using prefix normal words, we provide a characterization of the equivalence class of binary words having the same set of Parikh vectors of their factors. We prove that the language of prefix normal words is not context-free and is strictly contained in the language of pre-necklaces, which are prefixes of powers of Lyndon words. We give enumeration results on $\textit{pnw}(n)$, the number of prefix normal words of length $n$, showing that, for sufficiently large $n$, [ 2{n-4 \sqrt{n \lg n}} \le \textit{pnw}(n) \le 2{n - \lg n + 1}. ] For fixed density (number of $1$s), we show that the ordinary generating function of the number of prefix normal words of length $n$ and density $d$ is a rational function. Finally, we give experimental results on $\textit{pnw}(n)$, discuss further properties, and state open problems.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.