Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
112 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Defect Corrected Finite Element Approach for the Accurate Evaluation of Magnetic Fields on Unstructured Grids (1611.08438v1)

Published 25 Nov 2016 in math.NA and cs.CE

Abstract: In electromagnetic simulations of magnets and machines one is often interested in a highly accurate and local evaluation of the magnetic field uniformity. Based on local post-processing of the solution, a defect correction scheme is proposed as an easy to realize alternative to higher order finite element or hybrid approaches. Radial basis functions (RBF)s are key for the generality of the method, which in particular can handle unstructured grids. Also, contrary to conventional finite element basis functions, higher derivatives of the solution can be evaluated, as required, e.g., for deflection magnets. Defect correction is applied to obtain a solution with improved accuracy and adjoint techniques are used to estimate the remaining error for a specific quantity of interest. Significantly improved (local) convergence orders are obtained. The scheme is also applied to the simulation of a Stern-Gerlach magnet currently in operation.

Citations (5)

Summary

We haven't generated a summary for this paper yet.