Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Statistical mechanics of the inverse Ising problem and the optimal objective function (1611.04281v4)

Published 14 Nov 2016 in cond-mat.dis-nn, q-bio.QM, and stat.ML

Abstract: The inverse Ising problem seeks to reconstruct the parameters of an Ising Hamiltonian on the basis of spin configurations sampled from the Boltzmann measure. Over the last decade, many applications of the inverse Ising problem have arisen, driven by the advent of large-scale data across different scientific disciplines. Recently, strategies to solve the inverse Ising problem based on convex optimisation have proven to be very successful. These approaches maximise particular objective functions with respect to the model parameters. Examples are the pseudolikelihood method and interaction screening. In this paper, we establish a link between approaches to the inverse Ising problem based on convex optimisation and the statistical physics of disordered systems. We characterise the performance of an arbitrary objective function and calculate the objective function which optimally reconstructs the model parameters. We evaluate the optimal objective function within a replica-symmetric ansatz and compare the results of the optimal objective function with other reconstruction methods. Apart from giving a theoretical underpinning to solving the inverse Ising problem by convex optimisation, the optimal objective function outperforms state-of-the-art methods, albeit by a small margin.

Citations (15)

Summary

We haven't generated a summary for this paper yet.