Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 19 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 465 tok/s Pro
Kimi K2 179 tok/s Pro
2000 character limit reached

Topos points of quasi-coherent sheaves over monoid schemes (1611.02211v2)

Published 7 Nov 2016 in math.CT

Abstract: Let $X$ be a monoid scheme. We will show that the stalk at any point of $X$ defines a point of the topos $\Qc(X)$ of quasi-coherent sheaves over $X$. As it turns out, every topos point of $\Qc(X)$ is of this form if $X$ satisfies some finiteness conditions. In particular, it suffices for $M/M\times$ to be finitely generated when $X$ is affine, where $M\times$ is the group of invertible elements. This allows us to prove that two quasi-projective monoid schemes $X$ and $Y$ are isomorphic if and only if $\Qc(X)$ and $\Qc(Y)$ are equivalent. The finiteness conditions are essential, as one can already conclude by the work of A. Connes and C. Consani \cite{cc1}. We will study the topos points of free commutative monoids and show that already for $\mathbb{N}\infty$, there are hidden' points. That is to say, there are topos points which are not coming from prime ideals. This observation reveals that there might be a more interestinggeometry of monoids'.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)