Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Score-Based Parameter Estimation for a Class of Continuous-Time State Space Models (2008.07803v2)

Published 18 Aug 2020 in stat.CO, cs.NA, math.NA, and math.PR

Abstract: We consider the problem of parameter estimation for a class of continuous-time state space models. In particular, we explore the case of a partially observed diffusion, with data also arriving according to a diffusion process. Based upon a standard identity of the score function, we consider two particle filter based methodologies to estimate the score function. Both methods rely on an online estimation algorithm for the score function of $\mathcal{O}(N2)$ cost, with $N\in\mathbb{N}$ the number of particles. The first approach employs a simple Euler discretization and standard particle smoothers and is of cost $\mathcal{O}(N2 + N\Delta_l{-1})$ per unit time, where $\Delta_l=2{-l}$, $l\in\mathbb{N}_0$, is the time-discretization step. The second approach is new and based upon a novel diffusion bridge construction. It yields a new backward type Feynman-Kac formula in continuous-time for the score function and is presented along with a particle method for its approximation. Considering a time-discretization, the cost is $\mathcal{O}(N2\Delta_l{-1})$ per unit time. To improve computational costs, we then consider multilevel methodologies for the score function. We illustrate our parameter estimation method via stochastic gradient approaches in several numerical examples.

Citations (10)

Summary

We haven't generated a summary for this paper yet.