Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 30 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Projected Gradient and Constraint Linearization Method for Nonlinear Model Predictive Control (1610.06834v1)

Published 21 Oct 2016 in math.OC

Abstract: Projected Gradient Descent denotes a class of iterative methods for solving optimization programs. Its applicability to convex optimization programs has gained significant popularity for its intuitive implementation that involves only simple algebraic operations. In fact, if the projection onto the feasible set is easy to compute, then the method has low complexity. On the other hand, when the problem is nonconvex, e.g. because of nonlinear equality constraints, the projection becomes hard and thus impractical. In this paper, we propose a projected gradient method for Nonlinear Programs (NLPs) that only requires projections onto the linearization of the nonlinear constraints around the current iterate, similarly to Sequential Quadratic Programming (SQP). Although the projection is easier to compute, it makes the intermediate steps unfeasible for the original problem. As a result, the gradient method does not fall either into the projected gradient descent approaches, because the projection is not performed onto the original nonlinear manifold, or into the standard SQP, since second-order information is not used. For nonlinear smooth optimization problems, we analyze the similarities of the proposed method with SQP and assess its local and global convergence to a Karush-Kuhn-Tucker (KKT) point of the original problem. Further, we show that nonlinear Model Predictive Control (MPC) is a promising application of the proposed method, due to the sparsity of the resulting optimization problem. We illustrate the computational efficiency of the proposed method in a numerical example with box constraints on the control input and a quadratic terminal constraint on the state variable.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.