Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High-performance K-means Implementation based on a Simplified Map-Reduce Architecture (1610.05601v3)

Published 17 Oct 2016 in cs.DC and cs.AR

Abstract: The k-means algorithm is one of the most common clustering algorithms and widely used in data mining and pattern recognition. The increasing computational requirement of big data applications makes hardware acceleration for the k-means algorithm necessary. In this paper, a simplified Map-Reduce architecture is proposed to implement the k-means algorithm on an FPGA. Algorithmic segmentation, data path elaboration and automatic control are applied to optimize the architecture for high performance. In addition, high level synthesis technique is utilized to reduce development cycles and complexity. For a single iteration in the k-means algorithm, a throughput of 28.74 Gbps is achieved. The performance shows at least 3.93x speedup compared with four representative existing FPGA-based implementations and can satisfy the demand of big data applications.

Citations (9)

Summary

We haven't generated a summary for this paper yet.