Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Kimi K2 210 tok/s Pro
2000 character limit reached

Neural Network for Quantum Brain Dynamics: 4D CP$^1$+U(1) Gauge Theory on Lattice and its Phase Structure (1610.05443v1)

Published 18 Oct 2016 in cond-mat.dis-nn and hep-lat

Abstract: We consider a system of two-level quantum quasi-spins and gauge bosons put on a 3+1D lattice. As a model of neural network of the brain functions, these spins describe neurons quantum-mechanically, and the gauge bosons describes weights of synaptic connections. It is a generalization of the Hopfield model to a quantum network with dynamical synaptic weights. At the microscopic level, this system becomes a model of quantum brain dynamics proposed by Umezawa et al., where spins and gauge field describe water molecules and photons, respectively. We calculate the phase diagram of this system under quantum and thermal fluctuations, and find that there are three phases; confinement, Coulomb, and Higgs phases. Each phase is classified according to the ability to learn patterns and recall them. By comparing the phase diagram with that of classical networks, we discuss the effect of quantum fluctuations and thermal fluctuations (noises in signal propagations) on the brain functions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.