Algebraic methods in approximation theory (1610.05181v1)
Abstract: This survey gives an overview of several fundamental algebraic constructions which arise in the study of splines. Splines play a key role in approximation theory, geometric modeling, and numerical analysis, their properties depend on combinatorics, topology, and geometry of a simplicial or polyhedral subdivision of a region in Rk, and are often quite subtle. We describe four algebraic techniques which are useful in the study of splines: homology, graded algebra, localization, and inverse systems. Our goal is to give a hands-on introduction to the methods, and illustrate them with concrete examples in the context of splines. We highlight progress made with these methods, such as a formula for the third coefficient of the polynomial giving the dimension of the spline space in high degree, much of which builds on pioneering work of Schumaker, Alfeld-Schumaker, and Billera. The objects appearing here may be computed using the Macaulay2 software system.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.