Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 30 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Determinism and Computational Power of Real Measurement-based Quantum Computation (1610.02824v2)

Published 10 Oct 2016 in quant-ph

Abstract: Measurement-based quantum computing (MBQC) is a universal model for quantum computation. The combinatorial characterisation of determinism in this model, powered by measurements, and hence, fundamentally probabilistic, is the cornerstone of most of the breakthrough results in this field. The most general known sufficient condition for a deterministic MBQC to be driven is that the underlying graph of the computation has a particular kind of flow called Pauli flow. The necessity of the Pauli flow was an open question. We show that the Pauli flow is necessary for real-MBQC, and not in general providing counterexamples for (complex) MBQC. We explore the consequences of this result for real MBQC and its applications. Real MBQC and more generally real quantum computing is known to be universal for quantum computing. Real MBQC has been used for interactive proofs by McKague. The two-prover case corresponds to real-MBQC on bipartite graphs. While (complex) MBQC on bipartite graphs are universal, the universality of real MBQC on bipartite graphs was an open question. We show that real bipartite MBQC is not universal proving that all measurements of real bipartite MBQC can be parallelised leading to constant depth computations. As a consequence, McKague techniques cannot lead to two-prover interactive proofs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.