Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 175 tok/s Pro
2000 character limit reached

Concentration for Coulomb gases and Coulomb transport inequalities (1610.00980v3)

Published 4 Oct 2016 in math-ph, math.FA, math.MP, and math.PR

Abstract: We study the non-asymptotic behavior of Coulomb gases in dimension two and more. Such gases are modeled by an exchangeable Boltzmann-Gibbs measure with a singular two-body interaction. We obtain concentration of measure inequalities for the empirical distribution of such gases around their equilibrium measure, with respect to bounded Lipschitz and Wasserstein distances. This implies macroscopic as well as mesoscopic convergence in such distances. In particular, we improve the concentration inequalities known for the empirical spectral distribution of Ginibre random matrices. Our approach is remarkably simple and bypasses the use of renormalized energy. It crucially relies on new inequalities between probability metrics, including Coulomb transport inequalities which can be of independent interest. Our work is inspired by the one of Ma{\"i}da and Maurel-Segala, itself inspired by large deviations techniques. Our approach allows to recover, extend, and simplify previous results by Rougerie and Serfaty.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube