Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Vocabulary Selection Strategies for Neural Machine Translation (1610.00072v1)

Published 1 Oct 2016 in cs.CL

Abstract: Classical translation models constrain the space of possible outputs by selecting a subset of translation rules based on the input sentence. Recent work on improving the efficiency of neural translation models adopted a similar strategy by restricting the output vocabulary to a subset of likely candidates given the source. In this paper we experiment with context and embedding-based selection methods and extend previous work by examining speed and accuracy trade-offs in more detail. We show that decoding time on CPUs can be reduced by up to 90% and training time by 25% on the WMT15 English-German and WMT16 English-Romanian tasks at the same or only negligible change in accuracy. This brings the time to decode with a state of the art neural translation system to just over 140 msec per sentence on a single CPU core for English-German.

Citations (41)

Summary

We haven't generated a summary for this paper yet.