Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast L1-L2 minimization via a proximal operator (1609.09530v4)

Published 29 Sep 2016 in math.OC, cs.IT, math.IT, and math.NA

Abstract: This paper aims to develop new and fast algorithms for recovering a sparse vector from a small number of measurements, which is a fundamental problem in the field of compressive sensing (CS). Currently, CS favors incoherent systems, in which any two measurements are as little correlated as possible. In reality, however, many problems are coherent, and conventional methods such as $L_1$ minimization do not work well. Recently, the difference of the $L_1$ and $L_2$ norms, denoted as $L_1$-$L_2$, is shown to have superior performance over the classic $L_1$ method, but it is computationally expensive. We derive an analytical solution for the proximal operator of the $L_1$-$L_2$ metric, and it makes some fast $L_1$ solvers such as forward-backward splitting (FBS) and alternating direction method of multipliers (ADMM) applicable for $L_1$-$L_2$. We describe in details how to incorporate the proximal operator into FBS and ADMM and show that the resulting algorithms are convergent under mild conditions. Both algorithms are shown to be much more efficient than the original implementation of $L_1$-$L_2$ based on a difference-of-convex approach in the numerical experiments.

Citations (158)

Summary

We haven't generated a summary for this paper yet.