Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized Line Spectral Estimation via Convex Optimization (1609.08198v1)

Published 26 Sep 2016 in cs.IT and math.IT

Abstract: Line spectral estimation is the problem of recovering the frequencies and amplitudes of a mixture of a few sinusoids from equispaced samples. However, in a variety of signal processing problems arising in imaging, radar, and localization we do not have access directly to such equispaced samples. Rather we only observe a severely undersampled version of these observations through linear measurements. This paper is about such generalized line spectral estimation problems. We reformulate these problems as sparse signal recovery problems over a continuously indexed dictionary which can be solved via a convex program. We prove that the frequencies and amplitudes of the components of the mixture can be recovered perfectly from a near-minimal number of observations via this convex program. This result holds provided the frequencies are sufficiently separated, and the linear measurements obey natural conditions that are satisfied in a variety of applications.

Citations (43)

Summary

We haven't generated a summary for this paper yet.