Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low Dimensional Atomic Norm Representations in Line Spectral Estimation (1701.08554v1)

Published 30 Jan 2017 in cs.IT and math.IT

Abstract: The line spectral estimation problem consists in recovering the frequencies of a complex valued time signal that is assumed to be sparse in the spectral domain from its discrete observations. Unlike the gridding required by the classical compressed sensing framework, line spectral estimation reconstructs signals whose spectral supports lie continuously in the Fourier domain. If recent advances have shown that atomic norm relaxation produces highly robust estimates in this context, the computational cost of this approach remains, however, the major flaw for its application to practical systems. In this work, we aim to bridge the complexity issue by studying the atomic norm minimization problem from low dimensional projection of the signal samples. We derive conditions on the sub-sampling matrix under which the partial atomic norm can be expressed by a low-dimensional semidefinite program. Moreover, we illustrate the tightness of this relaxation by showing that it is possible to recover the original signal in poly-logarithmic time for two specific sub-sampling patterns.

Citations (5)

Summary

We haven't generated a summary for this paper yet.