Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

S-MART: Novel Tree-based Structured Learning Algorithms Applied to Tweet Entity Linking (1609.08075v1)

Published 26 Sep 2016 in cs.CL

Abstract: Non-linear models recently receive a lot of attention as people are starting to discover the power of statistical and embedding features. However, tree-based models are seldom studied in the context of structured learning despite their recent success on various classification and ranking tasks. In this paper, we propose S-MART, a tree-based structured learning framework based on multiple additive regression trees. S-MART is especially suitable for handling tasks with dense features, and can be used to learn many different structures under various loss functions. We apply S-MART to the task of tweet entity linking --- a core component of tweet information extraction, which aims to identify and link name mentions to entities in a knowledge base. A novel inference algorithm is proposed to handle the special structure of the task. The experimental results show that S-MART significantly outperforms state-of-the-art tweet entity linking systems.

Citations (115)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube