Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 129 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An Improved Point-Line Incidence Bound Over Arbitrary Fields (1609.06284v4)

Published 20 Sep 2016 in math.CO

Abstract: We prove a new upper bound for the number of incidences between points and lines in a plane over an arbitrary field $\mathbb{F}$, a problem first considered by Bourgain, Katz and Tao. Specifically, we show that $m$ points and $n$ lines in $\mathbb{F}2$, with $m{7/8}<n<m{8/7}$, determine at most $O(m{11/15}n{11/15})$ incidences (where, if $\mathbb{F}$ has positive characteristic $p$, we assume $m{-2}n{13}\ll p{15}$). This improves on the previous best known bound, due to Jones. To obtain our bound, we first prove an optimal point-line incidence bound on Cartesian products, using a reduction to a point-plane incidence bound of Rudnev. We then cover most of the point set with Cartesian products, and we bound the incidences on each product separately, using the bound just mentioned. We give several applications, to sum-product-type problems, an expander problem of Bourgain, the distinct distance problem and Beck's theorem.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.