Papers
Topics
Authors
Recent
Search
2000 character limit reached

Read, Tag, and Parse All at Once, or Fully-neural Dependency Parsing

Published 12 Sep 2016 in cs.CL | (1609.03441v2)

Abstract: We present a dependency parser implemented as a single deep neural network that reads orthographic representations of words and directly generates dependencies and their labels. Unlike typical approaches to parsing, the model doesn't require part-of-speech (POS) tagging of the sentences. With proper regularization and additional supervision achieved with multitask learning we reach state-of-the-art performance on Slavic languages from the Universal Dependencies treebank: with no linguistic features other than characters, our parser is as accurate as a transition- based system trained on perfect POS tags.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.