Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stack-propagation: Improved Representation Learning for Syntax (1603.06598v2)

Published 21 Mar 2016 in cs.CL

Abstract: Traditional syntax models typically leverage part-of-speech (POS) information by constructing features from hand-tuned templates. We demonstrate that a better approach is to utilize POS tags as a regularizer of learned representations. We propose a simple method for learning a stacked pipeline of models which we call "stack-propagation". We apply this to dependency parsing and tagging, where we use the hidden layer of the tagger network as a representation of the input tokens for the parser. At test time, our parser does not require predicted POS tags. On 19 languages from the Universal Dependencies, our method is 1.3% (absolute) more accurate than a state-of-the-art graph-based approach and 2.7% more accurate than the most comparable greedy model.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yuan Zhang (331 papers)
  2. David Weiss (16 papers)
Citations (87)

Summary

We haven't generated a summary for this paper yet.