Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A LSE and Sparse Message Passing-Based Channel Estimation for mmWave MIMO Systems (1609.03150v1)

Published 11 Sep 2016 in cs.IT and math.IT

Abstract: In this paper, we propose a novel channel estimation algorithm based on the Least Square Estimation (LSE) and Sparse Message Passing algorithm (SMP), which is of special interest for Millimeter Wave (mmWave) systems, since this algorithm can leverage the inherent sparseness of the mmWave channel. Our proposed algorithm will iteratively detect exact the location and the value of non-zero entries of sparse channel vector without its prior knowledge of distribution. The SMP is used to detect exact the location of non-zero entries of the channel vector, while the LSE is used for estimating its value at each iteration. Then, the analysis of the Cramer-Rao Lower Bound (CRLB) of our proposed algorithm is given. Numerical experiments show that our proposed algorithm has much better performance than the existing sparse estimators (e.g. LASSO), especially when mmWave systems have massive antennas at both the transmitters and receivers. In addition, we also find that our proposed algorithm converges to the CRLB of the genie-aided estimation of sparse channels in just a few turbo iterations.

Citations (28)

Summary

We haven't generated a summary for this paper yet.