Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Principal component analysis and the locus of the Frechet mean in the space of phylogenetic trees (1609.03045v1)

Published 10 Sep 2016 in stat.ME

Abstract: Most biological data are multidimensional, posing a major challenge to human comprehension and computational analysis. Principal component analysis is the most popular approach to rendering two- or three-dimensional representations of the major trends in such multidimensional data. The problem of multidimensionality is acute in the rapidly growing area of phylogenomics. Evolutionary relationships are represented by phylogenetic trees, and very typically a phylogenomic analysis results in a collection of such trees, one for each gene in the analysis. Principal component analysis offers a means of quantifying variation and summarizing a collection of phylogenies by dimensional reduction. However, the space of all possible phylogenies on a fixed set of species does not form a Euclidean vector space, so principal component analysis must be reformulated in the geometry of tree-space, which is a CAT(0) geodesic metric space. Previous work has focused on construction of the first principal component, or principal geodesic. Here we propose a geometric object which represents a $k$-th order principal component: the locus of the weighted Fr\'echet mean of $k+1$ points in tree-space, where the weights vary over the standard $k$-dimensional simplex. We establish basic properties of these objects, in particular that locally they generically have dimension $k$, and we propose an efficient algorithm for projection onto these surfaces. Combined with a stochastic optimization algorithm, this projection algorithm gives a procedure for constructing a principal component of arbitrary order in tree-space. Simulation studies confirm these algorithms perform well, and they are applied to data sets of Apicomplexa gene trees and the African coelacanth genome. The results enable visualizations of slices of tree-space, revealing structure within these complex data sets.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.