Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Multistability of Phase-Locking in Equal-Frequency Kuramoto Models on Planar Graphs (1609.02359v2)

Published 8 Sep 2016 in nlin.AO, math-ph, and math.MP

Abstract: The number $\mathcal{N}$ of stable fixed points of locally coupled Kuramoto models depends on the topology of the network on which the model is defined. It has been shown that cycles in meshed networks play a crucial role in determining $\mathcal{N}$, because any two different stable fixed points differ by a collection of loop flows on those cycles. Since the number of different loop flows increases with the length of the cycle that carries them, one expects $\mathcal{N}$ to be larger in meshed networks with longer cycles. Simultaneously, the existence of more cycles in a network means more freedom to choose the location of loop flows differentiating between two stable fixed points. Therefore, $\mathcal{N}$ should also be larger in networks with more cycles. We derive an algebraic upper bound for the number of stable fixed points of the Kuramoto model with identical frequencies, under the assumption that angle differences between connected nodes do not exceed $\pi/2$. We obtain $\mathcal{N}\leq\prod_{k=1}c\left[2\cdot{\rm Int}(n_k/4)+1\right]$, which depends both on the number $c$ of cycles and on the spectrum of their lengths ${n_k}$. We further identify network topologies carrying stable fixed points with angle differences larger than $\pi/2$, which leads us to conjecture an upper bound for the number of stable fixed points for Kuramoto models on any planar network. Compared to earlier approaches that give exponential upper bounds in the total number of vertices, our bounds are much lower and therefore much closer to the true number of stable fixed points.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.